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ABSTRACT: 

 

The Sparse Multinomial Logistic Regression (SMLR) method introduced in (Krishnapuram, 2005) 

is among the state-of-the-art in supervised learning. However its application to large datasets, such 

as hyperspectral imagery is still a rather challenging task from the computational point of view, 

sometimes even impossible to perform. In this paper, the Bregman iteration-based SMLR method 

(Bregman-SMLR) recently introduced in (Bioucas-Dias, 2008) is applied to hyperspectral data 

classification problems. The Bregman method allows replacing a difficult, non-smooth convex 

problem with a sequence of quadratic plus diagonal l2-l1 problems which are very easy to solve 

(Bioucas-Dias, 2008). Compared with the SMLR algorithm, the reduction of computational 

complexity is on the order of d(m-1)
3 

(d is the number of features, and m is the number of classes.) 

The effectiveness of the proposed method is evaluated with simulated data sets and a real AVIRIS 

image. Results are presented and compared with others obtained by state-of-the-art supervised 

algorithms. 
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1. INTRODUCTION 

The sparse multinomial logistic regression 

(SMLR) method introduced in (Krishnapuram, 

2005) is among the state-of-the-art in 

supervised learning. The core of the SMLR is 

the solution of a two-term optimization 

problem: one term is the logistic regression and 

the other is a Laplacian prior which enforces 

sparseness, thus controlling the machine 

complexity. However, the SMLR application to 

large datasets, such as hyperspectral imagery, is 

still a rather challenging task from the 

computational point of view, being sometimes 

even impossible to perform. This is because 

SMLR has the complexity of the iterative 

reweighted least squares (IRLS) algorithm for 

maximum likelihood estimation of feature 

weights. To lighten the SMLR computational 

burden, a fast sparse multinomial logistic 

regression (FSMLR) was introduced in 

(Borges, 2006) to implement an iterative 

scheme (based on the block Gauss-Seidel 

method) to compute the feature weights of the 

decision function. The computational gain with 

respect to the SMLR algorithm is of the order 

of the number of classes. The FSMLR 

algorithm is thus well-suited to hyperspectral 

data sets with a large number of classes. 



 

 However, when dealing with classification 

problems with large training sets resulting, for 

example, from kernel-based regression, the 

FSMLR method is still very complex in 

computational terms. 

 

In this paper, the Bregman iteration-based 

SMLR method (Bregman-SMLR) recently 

introduced in (Bioucas-Dias, 2008) is applied to 

hyperspectral data classification problems. The 

Bregman method allows replacing a difficult, 

non-smooth convex problem with a sequence of 

quadratic plus diagonal l2-l1 problems which 

are very easy to solve. If d is the number of 

features and m is the number of classes, the 

complexity of the Bregman-SMLR method is 

O(d
2
), which is in contrast with the O((d(m-

1))
3
) figure of SMLR. As a result, the reduction 

of computational complexity is on the order of 

d(m-1)
3
. 

 

In order to illustrate the effectiveness of the 

Bregman-SMLR method, we apply it to 

simulated data sets and real AVIRIS 

hyperspectral image and compare the obtained 

results with those provided by the FSMLR, the 

support vector machines (SVMs), and the linear 

discriminant analysis (LDA) (Camps-Valls, 

2005) in terms of the following aspects: 1) 

overall accuracy; 2) computational cost; 3) 

robustness to noise; and 4) number of the 

training samples required. 

 

2. METHOD 

The SMLR used here is, basically, the 

algorithm introduced in Krishnapuram et Al. 

(Krishnapuram, 2005). The Bregman-SMLR 

solves the same optimization problem, but uses 

the augmented Lagrangian framework. In this 

section, we briefly review the SMLR the 

Bregman-SMLR methods.  

 

2.1 Sparse Multinomial Logistic Regression 

(SMLR) 

Let 1[ ,..., ] ,T d n d

n i
x x x x

×= ∈ℜ ∈ℜ be a vector of 

observed features, and (1) ( )[ ,..., ]m Ty y y=   a 1-

of-m encoding of the classes (n is the number of 

samples, d is the number of features, and m is 

the number of classes). The goal of 

classification is to estimate y given x. Suppose 
( )iω  is the feature-weight vector corresponding 

to class i; then, according to the multinomial 

logistic regression model, the probability that a 

given sample x belongs to class i is given as 

follows: 
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where, 1( ) [ ( ),..., ( )]T

l
h x h x h x= is a vector of l 

fixed functions of the input. Usual choices for 

h(x) are linear maps ,1 ,( ) [1, ,..., ]T

i i i nh x x x= , 

where ,i j
x means the jth component (band) of 

i
x  and kernels 1( ) [1, ( , ),..., ( , )]T

i n
h x K x x K x x= , 

where ( , )K ⋅ ⋅ is some symmetric kernel function. 

In this paper, we only consider kernels of the 

radial basis function (RBF) class.; for the 

nonlinear mapping guarantees that the 

transformed samples are more likely to be 

linearly separable. The SMLR method uses the 

Maximum A posteriori (MAP) method to 

estimate the components of ω from the training 

set: 
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where ( )l ω is the log-likelihood function, 
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and ( )p ω  is a Laplacian prior on ω , which 

means that 
1

( ) exp( )p ω λ ω∝ − , where λ is a 

regularization parameter controlling the degree 

of sparseness of 
MAP

ω) . According to the bound 

optimization approach (Lange, 2000), the log-

likelihood function ( )l ω can be optimized by 

iteratively maximizing a surrogate function Q, 

such that: 
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While the log-likelihood function is concave, 

the surrogate function ( | ')Q ω ω)  can be 

determined by using a bound on the Hessian H 

of the log-likelihood. Let B be a negative 

definite matrix such that ( )H Bω − is positive 

semi-definite, i.e., ( )H Bω ≥ for any ω . A valid 

surrogate function is (B o&& hning, 1992), 
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where ⊗ is the Kronecher matrix product, 
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y y y y − =   and 

(1) ( 1)( ) ( ),..., ( )
T

m

j j j
p p pω ω ω− =   . 

 

With the inclusion of a Laplacian prior, the 

objective function becomes 
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The estimates of ω are then given by: 
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It is not easy to minimize (9) directly in closed 

form. A line of attack is to replace the 1l norm 

with a lower quadratic bound in order to get a 

surrogate function to iteratively optimize the 

log-prior. This leads the update function 
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Numerically, (10) is equivalent to solve 

(Krishnapuram, 2005): 
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and  ( )i

t
ω)  stands for the ith value of vector tω

)
. 

Now it is possible to estimate the MAP 

multinomial logistic regression with a 

Laplacian prior by using the classical IRLS 

method. And the complexity is the same as the 

IRLS algorithm for ML estimation. 

 

2.2 Bregman-SMLR 

The computational cost involved in solving the 

linear system presented in (12) is O((dm)
3
), 

which is prohibitive when dealing with large 

datasets, either with large number of features, 

or with a very large training dataset. Recently, a 

Bregman iteration based sparse multinomial 

logistic regression (Bregman-SMLR) was 

introduced by J. Bioucas (Bioucas-Dias, 2008), 

which made possible to deal efficiently with 

large data sets. In this section, we briefly review 

the Bregman-SMLR algorithm.  

In expression (9), suppose that ν ω= . Then, we 

can replace the problem with the following one: 
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(14) can be iteratively solved (Bioucas-Dias, 

2008) as follows: 
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The above minimization is still a difficult 

problem. However, the minimizations with 

respect to either ω  or ν are very easy to 

compute. Exploiting this fact the Bregman-

SMLR iterative scheme proposed in (Bioucas-

Dias, 2008) is a follows: 
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The first step leads to the update function ofω) : 
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The second step amounts to apply the soft 

shrinkage function to update eν : 
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Where B and ( )
t

g ω) are given in (6) and (7), 

respectively. According to (6), B is fixed, so the 

part of 1( )B Iβ −− +  in (17) doesn’t need to be 

updated during the iterations. It can be 

computed before hand, which greatly lighten 

the computational complexity, leading to a cost 

of O(d
2
). 

 

3. EXPERIMENT RESULT 

In this section, experimental results will be 

presented. In the first part, simulated data sets 

are performed to analysis the computational 

cost, robustness to noise and limited training 

samples. In the second part shows the results 

obtained from real hyperspectral imagery.  

 

3.1 Simulated hyperspectral images 

Simulated datasets are used to test the proposed 

method in comparison with the FSMLR 

algorithm, which demonstrates high quality in 

supervised hyperspectral classification as 

shown in (Borges, 2006). The size of the 

simulated images is 100 100 224× ×  (100 100×  

is the spatial size of the simulate images, and 

224 is the number of spectral bands.), and 10 

classes. The featurures are Gausssian vectors 

with means selected from the USGS (Clark, 

2007) library. And covariance matrix 2
Iσ , 

where I is the identity matrix. The parameter σ  

determines the signal-to-noise ratio (SNR), 

as ( )2

10SNR 10log [ ] / [ ]TE x x E nσ≡  (n is the 

number of samples). Figure 1, top, shows the 

overall accuracy (OA) as a function of SNR 

using 100 training samples (1% of the whole 

image).The remaining samples are used for 

validation. In this case, The Bregman-SMLR 

algorithm outperforms the FSMLR. Figure 1, 

middle, shows OA results as a function of the 

number of training samples with SNR set to 5.  

Both algorithms obtain similar OA. Figure 1, 

bottom, shows the computational cost as a 

function of the number of training samples. As 

expected, the Bregman-SMLR is much faster 

than FSMLR. 

 

 
 



 

 
 

Figure 1.  Results on simulated data sets. Each 

value was obtained from 100 Monte Carlo runs. 

 

3.2 Experiments on real hyperspectral data 

Experiments are also carried out using an 

AVIRIS spectrometer image taken over 

northwest Indianas Indian Pine test site in June 

1992 (Landgrebe, 1992). It contains 145 145×  

pixels and 220 bands. Noisy bands in number of 

20, namely due to water absorption, were 

discarded during the experiments. The ground 

truth data image contains   16 classes, 7 of 

which were discarded for insufficient number 

of training samples. The remaining 9 classes 

were used to generate a set of 4757 training 

samples, with random partition, and 4588 test 

samples. Table 1 compares the OA results with 

state-of-the-art supervised algorithms. The 

Bregman-SMLR obtained much better results 

than LDA, similar or comparable results to 

FSMLR and SVMs. Figure 2. shows the 

computational cost as a function of the number 

of training samples in comparison with FSMLR 

algorithm. Considering the computational costs 

a function of the training set size, the Bregman-

SMLR achieves much better performance than 

the FSMLR method. For 50% of the training 

set, the FSMLR needs 317.99 seconds while it 

just needs 33.54 seconds of the Bregman-

SMLR. 
 

Bregman-

SMLR 

FSMLR SVMs LDA 

91.23% 90.52% ~91% 91.08% 

Table 1.  Comparison of the proposed method 

with the results from (Camps-Valls, 2005; 

Borges, 2006) on a real dataset. 

 
Figure 2.  Results on a real dataset 
 

4. CONCLUSIONS 

In this paper, a fast Bregman sparse 

multinomial logistic regression algorithm 

(Bregman-SMLR) is applied to hyperspectral 

imagery. Compared with the SMLR algorithm, 

it is much faster and more efficient.. The 

performance of the proposed approach was 

evaluated by using simulated data sets and real 

AVIRIS hyperspectral imagery. The results 

obtained show high quality in supervised 

hyperspectral classification in terms of overall 

accuracy, robustness to noise, low complexity 

and limited training samples.  
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